the area of a rectangle is 54 cm. The length is 2 cm more than x and the width is 5 cm less than twice x. Slove for x. round your answer to the nearest whole number.
area=LW 54=LW L is 2 more than x L=2+x w is 5 less than 2x W=-5+2x
54=LW L=2+x W=-5+2x input 54=(2+x)(-5+2x) distribute/FOIL 54=-10+4x-5x+2x^2 add like terms 54=-10-x+2x^2 minus 54 2x^2-x-64=0 quadratic formula x=[tex] \frac{ -b+/-\sqrt{b^{2}-4ac} }{2a} [/tex] x=[tex] \frac{ -(-1)+/-\sqrt{(-1)^{2}-4(2)(-64)} }{2(2)} [/tex] x=[tex] \frac{ 1+/-\sqrt{1-(-256)} }{4} [/tex] x=[tex] \frac{ 1+/-\sqrt{1-(-256)} }{4} [/tex] x=4.257 or -3.75 we disregard the negative one because that would make legnth and width negative